Publications

 PUBLICATIONS:YEAR
1.Chen, Zhiqian and Chen, Fanglan and Zhang, Lei and Ji, Taoran and Fu, Kaiqun and Zhao, Liang and Chen, Feng and Wu, Lingfei and Aggarwal, Charu and Lu, Chang-Tien “Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural Networks” ACM Computing Surveys , v.56 , 2024 https://doi.org/10.1145/3627816 Citation Details2024
2.Jiang, Yongyao and Yang, Chaowei “Is ChatGPT a Good Geospatial Data Analyst? Exploring the Integration of Natural Language into Structured Query Language within a Spatial Database” ISPRS International Journal of Geo-Information , v.13 , 2024 https://doi.org/10.3390/ijgi13010026 Citation Details2024
3.Kim, Junghwan and Rapuri, Sampath and Wang, Kevin and Wendy Guan, Weihe and Laituri, Melinda “A scoping review of COVID-19 research adopting quantitative geographical methods in geography, urban studies, and planning: a text mining approach” Annals of GIS , 2024 https://doi.org/10.1080/19475683.2024.2304205 Citation Details2024
4.Kim, Junghwan and Rapuri, Sampath and Wang, Kevin and Wendy Guan, Weihe and Laituri, Melinda “A scoping review of COVID-19 research adopting quantitative geographical methods in geography, urban studies, and planning: a text mining approach” Annals of GIS , 2024 https://doi.org/10.1080/19475683.2024.2304205 Citation Details2024
1.Wei, Yijun and Yang, Ruixin and Sun, Donglian “Investigating Tropical Cyclone Rapid Intensification with an Advanced Artificial Intelligence System and Gridded Reanalysis Data” Atmosphere , v.14 , 2023 https://doi.org/10.3390/atmos14020195 Citation Details2023
2.Wang, Zifu and Li, Yun and Wang, Kevin and Cain, Jacob and Salami, Mary and Duffy, Daniel Q. and Little, Michael M. and Yang, Chaowei “Adopting GPU computing to support DL-based Earth science applications” International Journal of Digital Earth , v.16 , 2023 https://doi.org/10.1080/17538947.2023.2233488 Citation Details2023
3.Malarvizhi, Anusha Srirenganathan and Liu, Qian and Trefonides, Theodore S. and Hasheminassab, Sina and Smith, Jennifer and Huang, Thomas and Marlis, Kevin M. and Roberts, Joe T. and Wang, Zifu and Sha, Dexuan and Beatriz Moura Pereira, Ana and Podar, Her “The spatial dynamics of Ukraine air quality impacted by the war and pandemic” International Journal of Digital Earth , v.16 , 2023 https://doi.org/10.1080/17538947.2023.2239762 Citation Details2023
4.Li, Sanmei and Goldberg, Mitchell and Helfrich, Sean and Kalluri, Sataya and Sjoberg, William and Sun, Donglian “Time-Series Global Flood Mapping Datasets from Suomi-NPP&NOAA-20/VIIRS for Flood Analysis and Modelling” , 2023 https://doi.org/10.1109/IGARSS52108.2023.10283346 Citation Details2023
5.Dexuan Sha and Anusha Srirenganathan Malarvizhi and Hai Lan and Xin Miao and Hongie Xie and Daler Khamidov and Kevin Wang and Seren Smith and Katherine Howell and Chaowei Yang “ArcCI: A high-resolution aerial image management and processing platform for sea ice” Special paper Geological Society of America , 2023 Citation Details2023
6.Yu, Manzhu and Masrur, Arif and Blaszczak-Boxe, Christopher “Predicting hourly PM2.5 concentrations in wildfire-prone areas using a SpatioTemporal Transformer model” Science of The Total Environment , v.860 , 2023 https://doi.org/10.1016/j.scitotenv.2022.160446 Citation Details2023
7.Liu, Qian and Xu, Hui and Houser, Paul R. and Sun, Donglian and Rice, Matthew and Wang, Likun and Duffy, Daniel Q. and Yang, Chaowei “Cross-track infrared sounder cloud fraction retrieval using a deep neural network” Computers & Geosciences , v.170 , 2023 https://doi.org/10.1016/j.cageo.2022.105268 Citation Details2023
8.Kim, Junghwan and Rapuri, Sampath and Chuluunbaatar, Enkhtungalag and Sumiyasuren, Erdenetsogt and Lkhagvasuren, Byambatsetseg and Budhathoki, Nama Raj and Laituri, Melinda “Developing and evaluating transit-based healthcare accessibility in a low- and middle-income country: A case study in Ulaanbaatar, Mongolia” Habitat International , v.131 , 2023 https://doi.org/10.1016/j.habitatint.2022.102729 Citation Details2023
9.Xia, Xinming and Zhang, Yi and Jiang, Wenting and Wu, Connor Yuhao “Staying Home, Tweeting Hope: Mixed Methods Study of Twitter Sentiment Geographical Index During US Stay-At-Home Orders” Journal of Medical Internet Research , v.25 , 2023 https://doi.org/10.2196/45757 Citation Details2023
10.Fu, X. and Kakkar, D. and Chen, J. and Moynihan, K. M. and Hegland, T. A. and Blossom, J. “A COMPARATIVE STUDY OF METHODS FOR DRIVE TIME ESTIMATION ON GEOSPATIAL BIG DATA: A CASE STUDY IN USA” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences , v.XLVIII- , 2023 https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-53-2023 Citation Details2023
11.Chai, Yuchen and Kakkar, Devika and Palacios, Juan and Zheng, Siqi “Twitter Sentiment Geographical Index Dataset” Scientific Data , v.10 , 2023 https://doi.org/10.1038/s41597-023-02572-7 Citation Details2023
12.Liu, Lingbo and Alford-Teaster, Jennifer and Onega, Tracy and Wang, Fahui “Refining 2SVCA method for measuring telehealth accessibility of primary care physicians in Baton Rouge, Louisiana” Cities , v.138 , 2023 https://doi.org/10.1016/j.cities.2023.104364 Citation Details2023
1.Etemadyrad, Negar and Gao, Yuyang and Li, Qingzhe and Guo, Xiaojie and Krueger, Frank and Lin, Qixiang and Qiu, Deqiang and Zhao, Liang “Functional Connectivity Prediction With Deep Learning for Graph Transformation” IEEE Transactions on Neural Networks and Learning Systems , 2022 https://doi.org/10.1109/TNNLS.2022.3197337 Citation Details2022
2.Ling, Chen and Jiang, Junji and Wang, Junxiang and Liang, Zhao “Source Localization of Graph Diffusion via Variational Autoencoders for Graph Inverse Problems” Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery & Data Mining , 2022 https://doi.org/10.1145/3534678.3539288 Citation Details2022
3.Bai, Guangji and Zhao, Liang “Saliency-Regularized Deep Multi-Task Learning” Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery & Data Mining , 2022 https://doi.org/10.1145/3534678.3539442 Citation Details2022
4.Li, Yun and Li, Moming and Rice, Megan and Yang, Chaowei “Impact of COVID-19 containment and closure policies on tropospheric nitrogen dioxide: A global perspective” Environment International , v.158 , 2022 https://doi.org/10.1016/j.envint.2021.106887 Citation Details2022
5.Malarvizhi, Anusha Srirenganathan and Liu, Qian and Sha, Dexuan and Lan, Hai and Yang, Chaowei “An Open-Source Workflow for Spatiotemporal Studies with COVID-19 as an Example” ISPRS International Journal of Geo-Information , v.11 , 2022 https://doi.org/10.3390/ijgi11010013 Citation Details2022
6.Kakkar, D. and Blossom, J. and Guan, W. “RINX: A SOLUTION FOR INFORMATION EXTRACTION FROM BIG RASTER DATASETS” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences , v.XLVIII- , 2022 https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-245-2022 Citation Details2022
7.Li, Sanmei and Goldberg, Mitchell and Kalluri, Satya and Lindsey, Daniel T. and Sjoberg, Bill and Zhou, Lihang and Helfrich, Sean and Green, David and Borges, David and Yang, Tianshu and Sun, Donglian “High Resolution 3D Mapping of Hurricane Flooding from Moderate-Resolution Operational Satellites” Remote Sensing , v.14 , 2022 https://doi.org/10.3390/rs14215445 Citation Details2022
8.Zhang, Mengxi and Wang, Siqin and Hu, Tao and Fu, Xiaokang and Wang, Xiaoyue and Hu, Yaxin and Halloran, Briana and Li, Zhenlong and Cui, Yunhe and Liu, Haokun and Liu, Zhimin and Bao, Shuming “Human mobility and COVID-19 transmission: a systematic review and future directions” Annals of GIS , v.28 , 2022 https://doi.org/10.1080/19475683.2022.2041725 Citation Details2022
9.Du, Yuanqi and Guo, Xiaojie and Wang, Yinkai and Shehu, Amarda and Zhao, Liang and Xu, ed., Jinbo “Small molecule generation via disentangled representation learning” Bioinformatics , v.38 , 2022 https://doi.org/10.1093/bioinformatics/btac296 Citation Details2022
10.Wang, Junxiang and Li, Hongyi and Zhao, Liang “Accelerated Gradient-free Neural Network Training by Multi-convex Alternating Optimization” Neurocomputing , v.487 , 2022 https://doi.org/10.1016/j.neucom.2022.02.039 Citation Details2022
11.Wang, Junxiang and Jiang, Junji and Zhao, Liang “An Invertible Graph Diffusion Neural Network for Source Localization” WWW ’22: Proceedings of the ACM Web Conference , 2022 https://doi.org/10.1145/3485447.3512155 Citation Details
2022
12.Yu, Manzhu and Masrur, Arif and Blaszczak-Boxe, Christopher “Predicting hourly PM2.5 concentrations in wildfire-prone areas using a SpatioTemporal Transformer model” Science of The Total Environment , v.860 , 2023 https://doi.org/10.1016/j.scitotenv.2022.160446 Citation Details2022
13.Liu, Qian and Xu, Hui and Houser, Paul R. and Sun, Donglian and Rice, Matthew and Wang, Likun and Duffy, Daniel Q. and Yang, Chaowei “Cross-track infrared sounder cloud fraction retrieval using a deep neural network” Computers & Geosciences , v.170 , 2023 https://doi.org/10.1016/j.cageo.2022.105268 Citation Details2022
14.Phil Yang, Chaowei and Bao, Shuming and Guan, Wendy and Howell, Kate and Hu, Tao and Lan, Hai and Li, Yun and Liu, Qian and Smith, Jennifer and Srirenganathan, Anusha and Trefonides, Theo and Wang, Kevin and Wang, Zifu “Challenges and opportunities of the spatiotemporal responses to the global pandemic of COVID-19” Annals of GIS , v.28 , 2022 https://doi.org/10.1080/19475683.2022.2141396 Citation Details2022
15.Wang, Zifu and Chen, Yudi and Li, Yun and Kakkar, Devika and Guan, Wendy and Ji, Wenying and Cain, Jacob and Lan, Hai and Sha, Dexuan and Liu, Qian and Yang, Chaowei “Public Opinions on COVID-19 Vaccines?A Spatiotemporal Perspective on Races and Topics Using a Bayesian-Based Method” Vaccines , v.10 , 2022 https://doi.org/10.3390/vaccines10091486 Citation Details
2022
16.Liu, Qian and Srirenganathanmalarvizhi, Anusha and Howell, Katherine and Yang, Chaowei “Tropospheric Nitrogen Dioxide Increases Past Pre-Pandemic Levels Due to Economic Reopening in India” Frontiers in Environmental Science , v.10 , 2022 https://doi.org/10.3389/fenvs.2022.962891 Citation Details
2022
17.Li, Yun and Yang, Ruixin and Su, Hui and Yang, Chaowei “Discovering Precursors to Tropical Cyclone Rapid Intensification in the Atlantic Basin Using Spatiotemporal Data Mining” Atmosphere , v.13 , 2022 https://doi.org/10.3390/atmos13060882 Citation Details2022
18.Liu, Lingbo and Wang, Ru and Guan, Weihe Wendy and Bao, Shuming and Yu, Hanchen and Fu, Xiaokang and Liu, Hongqiang “Assessing Reliability of Chinese Geotagged Social Media Data for Spatiotemporal Representation of Human Mobility” ISPRS International Journal of Geo-Information , v.11 , 2022 https://doi.org/10.3390/ijgi11020145 Citation Details2022
19.Kakkar, Devika and Lewis, Ben and Guan, Wendy “Interactive analysis of big geospatial data with high?performance computing: A case study of partisan segregation in the United States” Transactions in GIS , v.26 , 2022 https://doi.org/10.1111/tgis.12955 Citation Details2022
20.Kim, Junghwan and Hagen, Erica and Muindi, Zacharia and Mbonglou, Gaston and Laituri, Melinda “An examination of water, sanitation, and hygiene (WASH) accessibility and opportunity in urban informal settlements during the COVID-19 pandemic: Evidence from Nairobi, Kenya” Science of The Total Environment , v.823 , 2022 https://doi.org/10.1016/j.scitotenv.2022.153398 Citation Details2022
21.Liu, Lingbo and Wang, Ru and Guan, Weihe Wendy and Bao, Shuming and Yu, Hanchen and Fu, Xiaokang and Liu, Hongqiang “Assessing Reliability of Chinese Geotagged Social Media Data for Spatiotemporal Representation of Human Mobility” ISPRS International Journal of Geo-Information , v.11 , 2022 https://doi.org/10.3390/ijgi11020145 Citation Details2022
22.Yu, Hanchen and Lao, Xin and Gu, Hengyu and Zhao, Zhihao and He, Honghao “Understanding the Geography of COVID-19 Case Fatality Rates in China: A Spatial Autoregressive Probit-Log Linear Hurdle Analysis” Frontiers in Public Health , v.10 , 2022 https://doi.org/10.3389/fpubh.2022.751768 Citation Details2022
23.Liu, Lingbo and Yu, Hanchen and Zhao, Jie and Wu, Hao and Peng, Zhenghong and Wang, Ru “Multiscale Effects of Multimodal Public Facilities Accessibility on Housing Prices Based on MGWR: A Case Study of Wuhan, China” ISPRS International Journal of Geo-Information , v.11 , 2022 https://doi.org/10.3390/ijgi11010057 Citation Details2022
24.Wang, Peixiao and Hu, Tao and Liu, Hongqiang and Zhu, Xinyan “Exploring the impact of under-reported cases on the COVID-19 spatiotemporal distributions using healthcare workers infection data” Cities , v.123 , 2022 https://doi.org/10.1016/j.cities.2022.103593 Citation Details2022
1.Yudi Chen, Angel Umana “Condition Sensing for Electricity Infrastructure in Disasters by Mining Public Topics from Social Media” arXivorg , 2021 Citation Details2021
2.Yu, Hanchen and Li, Jingwei and Bardin, Sarah and Gu, Hengyu and Fan, Chenjing “Spatiotemporal Dynamic of COVID-19 Diffusion in China: A Dynamic Spatial Autoregressive Model Analysis” ISPRS International Journal of Geo-Information , v.10 , 2021 https://doi.org/10.3390/ijgi10080510 Citation Details2021
3.Song, Jinglu and Yu, Hanchen and Lu, Yi “Spatial-scale dependent risk factors of heat-related mortality: A multiscale geographically weighted regression analysis” Sustainable Cities and Society , v.74 , 2021 https://doi.org/10.1016/j.scs.2021.103159 Citation Details2021
4.Sha, Dexuan and Koo, Younghyun and Miao, Xin and Srirenganathan, Anusha and Lan, Hai and Biswas, Shorojit and Liu, Qian and Mestas-Nuñez, Alberto M. and Xie, Hongjie and Yang, Chaowei “Spatiotemporal Analysis of Sea Ice Leads in the Arctic Ocean Retrieved from IceBridge Laxon Line Data 2012?2018” Remote Sensing , v.13 , 2021 https://doi.org/10.3390/rs13204177 Citation Details2021
5.Li, Xiaosheng and Lin, Jessica and Zhao, Liang “Time series clustering in linear time complexity” Data Mining and Knowledge Discovery , v.35 , 2021 https://doi.org/10.1007/s10618-021-00798-w Citation Details2021
6.Li, Yun and Li, Moming and Rice, Megan and Yang, Chaowei “Impact of COVID-19 containment and closure policies on tropospheric nitrogen dioxide: A global perspective” Environment International , v.158 , 2022 https://doi.org/10.1016/j.envint.2021.106887 Citation Details2021
7.Lan, Hai and Sha, Dexuan and Malarvizhi, Anusha Srirenganathan and Liu, Yi and Li, Yun and Meister, Nadine and Liu, Qian and Wang, Zifu and Yang, Jingchao and Yang, Chaowei Phil “COVID-Scraper: An Open-Source Toolset for Automatically Scraping and Processing Global Multi-Scale Spatiotemporal COVID-19 Records” IEEE Access , v.9 , 2021 https://doi.org/10.1109/ACCESS.2021.3085682 Citation Details2021
8.Anwar, A: Abusnaina “Cleaning the NVD: Comprehensive Quality Assessment, Improvements, and Analyses” ArXivorg , 2021 https://doi.org/ Citation Details2021
9.Liu, Qian and Harris, Jackson T. and Chiu, Long S. and Sun, Donglian and Houser, Paul R. and Yu, Manzhu and Duffy, Daniel Q. and Little, Michael M. and Yang, Chaowei “Spatiotemporal impacts of COVID-19 on air pollution in California, USA” Science of The Total Environment , v.750 , 2021 https://doi.org/10.1016/j.scitotenv.2020.141592 Citation Details2021
10.Liu, Qian and Chiu, Long S. and Hao, Xianjun and Yang, Chaowei “Spatiotemporal Trends and Variations of the Rainfall Amount, Intensity, and Frequency in TRMM Multi-satellite Precipitation Analysis (TMPA) Data” Remote Sensing , v.13 , 2021 https://doi.org/10.3390/rs13224629 Citation Details2021
11.Li, Yun and Li, Moming and Rice, Megan and Su, Yanfang and Yang, Chaowei “Phased Implementation of COVID-19 Vaccination: Rapid Assessment of Policy Adoption, Reach and Effectiveness to Protect the Most Vulnerable in the US” International Journal of Environmental Research and Public Health , v.18 , 2021 https://doi.org/10.3390/ijerph18147665 Citation Details2021
12.Nyberg, John E. and Pe?eri, Shachak and Slocum, Susan L. and Rice, Matthew and Komwa, Maction and Sun, Donglian “Planning and Preparation for Cruising Infrastructure: Cuba as a Case Study” Sustainability , v.13 , 2021 https://doi.org/10.3390/su13052951 Citation Details2021
13.Li, Yun and Rice, Megan and Li, Moming and Du, Chengan and Xin, Xin and Wang, Zifu and Shi, Xun and Yang, Chaowei “New Metrics for Assessing the State Performance in Combating the COVID?19 Pandemic” GeoHealth , v.5 , 2021 https://doi.org/10.1029/2021GH000450 Citation Details2021
14.Yu, Hanchen and Fotheringham, A. Stewart “A multiscale measure of spatial dependence based on a discrete Fourier transform” International Journal of Geographical Information Science , 2021 https://doi.org/10.1080/13658816.2021.2017440 Citation Details2021
15.Hu, Tao and Wang, Siqin and She, Bing and Zhang, Mengxi and Huang, Xiao and Cui, Yunhe and Khuri, Jacob and Hu, Yaxin and Fu, Xiaokang and Wang, Xiaoyue and Wang, Peixiao and Zhu, Xinyan and Bao, Shuming and Guan, Wendy and Li, Zhenlong “Human mobility data in the COVID-19 pandemic: characteristics, applications, and challenges” International Journal of Digital Earth , v.14 , 2021 https://doi.org/10.1080/17538947.2021.1952324 Citation Details2021
16.Laituri, Melinda and Richardson, Robert B. and Kim, Junghwan and Cline, Laura V. and Viscuso, Sebastian and Schwartz, Lee “Examining second-order impacts of COVID-19 in urban areas” Annals of GIS , 2021 https://doi.org/10.1080/19475683.2021.1954087 Citation Details2021
17.Kumar, Akhil and Kalra, Yogya and Guan, Weihe Wendy and Tibrewal, Vansh and Batta, Rupali and Chen, Andrew “COVID-19 impact on excess deaths of various causes in the United States” Annals of GIS , 2021 https://doi.org/10.1080/19475683.2021.1982001 Citation Details2021
18.Wang, P. and Ren, H. and Zhu, X. and Fu, X. and Liu, H. and Hu, T. “Spatiotemporal characteristics and factor analysis of SARS-CoV-2 infections among healthcare workers in Wuhan, China” Journal of Hospital Infection , v.110 , 2021 https://doi.org/10.1016/j.jhin.2021.02.002 Citation Details2021
19.Liu, Xue and Fatoyinbo, Temilola E. and Thomas, Nathan M. and Guan, Weihe Wendy and Zhan, Yanni and Mondal, Pinki and Lagomasino, David and Simard, Marc and Trettin, Carl C. and Deo, Rinki and Barenblitt, Abigail “Large-Scale High-Resolution Coastal Mangrove Forests Mapping Across West Africa With Machine Learning Ensemble and Satellite Big Data” Frontiers in Earth Science , v.8 , 2021 https://doi.org/10.3389/feart.2020.560933 Citation Details2021
20.Wang, Siqin and Zhang, Mengxi and Hu, Tao and Fu, Xiaokang and Gao, Zhe and Halloran, Briana and Liu, Yan “A Bibliometric Analysis and Network Visualisation of Human Mobility Studies from 1990 to 2020: Emerging Trends and Future Research Directions” Sustainability , v.13 , 2021 https://doi.org/10.3390/su13105372 Citation Details2021
21.Castro, Marcia C. and Kim, Sun and Barberia, Lorena and Ribeiro, Ana Freitas and Gurzenda, Susie and Ribeiro, Karina Braga and Abbott, Erin and Blossom, Jeffrey and Rache, Beatriz and Singer, Burton H. “Spatiotemporal pattern of COVID-19 spread in Brazil” Science , v.372 , 2021 https://doi.org/10.1126/science.abh1558 Citation Details2021
22.Hu, Tao and Zhang, Yin “A spatial?temporal network analysis of patent transfers from U.S. universities to firms” Scientometrics , v.126 , 2021 https://doi.org/10.1007/s11192-020-03745-6 Citation Details2021
23.Yue, Han and Hu, Tao “Geographical Detector-Based Spatial Modeling of the COVID-19 Mortality Rate in the Continental United States” International Journal of Environmental Research and Public Health , v.18 , 2021 https://doi.org/10.3390/ijerph18136832 Citation Details2021
1.Xu, Mengchao and Liu, Qian and Sha, Dexuan and Yu, Manzhu and Duffy, Daniel and Putman, William and Carroll, Mark and Lee, Tsengdar and Yang, Chaowei “PreciPatch: A Dictionary-based Precipitation Downscaling Method” Remote Sensing , v.12 , 2020 https://doi.org/10.3390/rs12061030 Citation Details2020
2.Wang, Na and Wang, Haoliang and Petrangeli, Stefano and Swaminathan, Viswanathan and Li, Fei and Chen, Songqing “Towards field-of-view prediction for augmented reality applications on mobile devices” MMSys ’20: 11th ACM Multimedia Systems Conference , 2020 https://doi.org/10.1145/3386293.3397114 Citation Details2020
3.Du, Yuanqi and Guo, Xiaojie and Shehu, Amarda and Zhao, Liang “Interpretable Molecule Generation via Disentanglement Learning” ACM International Conference on Bioinformatics, Computational Biology and Health Informatics , 2020 https://doi.org/10.1145/3388440.3414709 Citation Details2020
4.Anwar, A. “Statically Dissecting Internet of Things Malware: Analysis, Characterization, and Detection” Lecture notes in computer science , 2020 https://doi.org/10.1007/978-3-030-61078-4_25 Citation Details2020
5.Ahmed Abusnaina, Mohammed Abuhamad “Insights into Attacks? Progression: Prediction of Spatio-Temporal Behavior of DDoS Attacks” Lecture notes in computer science , 2020 https://doi.org/10.1007/978-3-030-65299-9_27 Citation Details2020
6.Liu, Qian and Sha, Dexuan and Liu, Wei and Houser, Paul and Zhang, Luyao and Hou, Ruizhi and Lan, Hai and Flynn, Colin and Lu, Mingyue and Hu, Tao and Yang, Chaowei “Spatiotemporal Patterns of COVID-19 Impact on Human Activities and Environment in Mainland China Using Nighttime Light and Air Quality Data” Remote Sensing , v.12 , 2020 https://doi.org/10.3390/rs12101576 Citation Details2020
7.Yang, Chaowei and Sha, Dexuan and Liu, Qian and Li, Yun and Lan, Hai and Guan, Weihe Wendy and Hu, Tao and Li, Zhenlong and Zhang, Zhiran and Thompson, John Hoot and Wang, Zifu and Wong, David and Ruan, Shiyang and Yu, Manzhu and Richardson, Douglas and Z “Taking the pulse of COVID-19: a spatiotemporal perspective” International Journal of Digital Earth , v.13 , 2020 https://doi.org/10.1080/17538947.2020.1809723 Citation Details2020
8.Sha, Dexuan and Liu, Yi and Liu, Qian and Li, Yun and Tian, Yifei and Beaini, Fayez and Zhong, Cheng and Hu, Tao and Wang, Zifu and Lan, Hai and Zhou, You and Zhang, Zhiran and Yang, Chaowei “A spatiotemporal data collection of viral cases for COVID-19 rapid response” Big Earth Data , 2020 https://doi.org/10.1080/20964471.2020.1844934 Citation Details2020
9.Dinakarrao, Sai Manoj and Guo, Xiaojie and Sayadi, Hossein and Nowzari, Cameron and Sasan, Avesta and Rafatirad, Setareh and Zhao, Liang and Homayoun, Houman “Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics” IEEE Access , v.8 , 2020 https://doi.org/10.1109/ACCESS.2020.3011919 Citation Details2020
10.Guo, Xiaojie and Zhao, Liang and Qin, Zhao and Wu, Lingfei and Shehu, Amarda and Ye, Yanfang. “Node-Edge Co-disentangled Representation Learning for Attributed Graph Generation” International Conference on Knowledge Discovery and Data Mining (SIGKDD) , 2020 https://doi.org/10.1145/3394486.3403221 Citation Details2020
11.Guo, X and Tadepalli, S and Zhao, L and Shehu, A. “Generating Tertiary Protein Structures via an Interpretative Variational Autoencoder.” ArXivorg , 2020 Citation Details2020
12.Zhao, L. “Event Prediction in Big Data Era: A Systematic Survey. arXiv preprint” ArXivorg , 2020 Citation Details2020
13.Guo, X and Zhao, L. “A systematic survey on deep generative models for graph generation” ArXivorg , 2020 Citation Details2020
14.Zhang, W and Zhao, L. “Online Decision Trees with Fairness” ArXivorg , 2020 Citation Details2020
15.Zhang, L and Zhao, L and Pfoser, D. “Factorized Deep Generative Models for Trajectory Generation with Spatiotemporal-Validity Constraints” ArXivorg , 2020 Citation Details2020
16.Li, Yun and Jiang, Yongyao and Yang, Chaowei and Yu, Manzhu and Kamal, Lara and Armstrong, Edward M. and Huang, Thomas and Moroni, David and McGibbney, Lewis J. “Improving search ranking of geospatial data based on deep learning using user behavior data” Computers & Geosciences , v.142 , 2020 https://doi.org/10.1016/j.cageo.2020.104520 Citation Details2020
17.Wang, J and Chai, Z and Cheng, Y and Zhao, L. “Toward Model Parallelism for Deep Neural Network based on Gradient-free ADMM Framework” ArXivorg , 2020 https://doi.org/ Citation Details2020
18.Liu, Qian and Xu, Hui and Sha, Dexuan and Lee, Tsengdar and Duffy, Daniel Q. and Walter, Jeff and Yang, Chaowei “Hyperspectral Infrared Sounder Cloud Detection Using Deep Neural Network Model” IEEE Geoscience and Remote Sensing Letters , 2020 https://doi.org/10.1109/LGRS.2020.3023683 Citation Details2020
19.Chai, Z and Chen, Y and Zhao, L and Cheng, Y and Rangwala, H. “FedAT: A Communication-Efficient Federated Learning Method with Asynchronous Tiers under Non-IID Data” ArXivorg , 2020 https://doi.org/ Citation Details2020
20.Yu, Manzhu and Bambacus, Myra and Cervone, Guido and Clarke, Keith and Duffy, Daniel and Huang, Qunying and Li, Jing and Li, Wenwen and Li, Zhenlong and Liu, Qian and Resch, Bernd and Yang, Jingchao and Yang, Chaowei “Spatiotemporal event detection: a review” International Journal of Digital Earth , v.13 , 2020 https://doi.org/10.1080/17538947.2020.1738569 Citation Details2020
21.Xu, Mengchao and Zhao, Liang and Yang, Ruixin and Yang, Jingchao and Sha, Dexuan and Yang, Chaowei “Integrating memory-mapping and N-dimensional hash function for fast and efficient grid-based climate data query” Annals of GIS , 2020 https://doi.org/10.1080/19475683.2020.1743354 Citation Details2020
22.Zhang, L and Zhao, L and Qin, S and Pfoser, D. “TG-GAN: Continuous-time Temporal Graph Generation with Deep Generative Models” ArXivorg , 2020 https://doi.org/ Citation Details2020
23.Hu, Fei and Yang, Chaowei and Jiang, Yongyao and Li, Yun and Song, Weiwei and Duffy, Daniel Q. and Schnase, John L. and Lee, Tsengdar “A hierarchical indexing strategy for optimizing Apache Spark with HDFS to efficiently query big geospatial raster data” International Journal of Digital Earth , v.13 , 2020 https://doi.org/10.1080/17538947.2018.1523957 Citation Details2020
24.Goldberg, Mitchell D. and Li, Sanmei and Lindsey, Daniel T. and Sjoberg, William and Zhou, Lihang and Sun, Donglian “Mapping, Monitoring, and Prediction of Floods Due to Ice Jam and Snowmelt with Operational Weather Satellites” Remote Sensing , v.12 , 2020 https://doi.org/10.3390/rs12111865 Citation Details2020
25.Li, Sanmei and Goldberg, Mitchell D. and Sjoberg, William and Zhou, Lihang and Nandi, Sreela and Chowdhury, Nazmi and Straka, William and Yang, Tianshu and Sun, Donglian “Assessment of the Catastrophic Asia Floods and Potentially Affected Population in Summer 2020 Using VIIRS Flood Products” Remote Sensing , v.12 , 2020 https://doi.org/10.3390/rs12193176 Citation Details2020
26.Sha, Dexuan and Miao, Xin and Lan, Hai and Stewart, Kathleen and Ruan, Shiyang and Tian, Yifei and Tian, Yuyang and Yang, Chaowei “Spatiotemporal analysis of medical resource deficiencies in the U.S. under COVID-19 pandemic” PLOS ONE , v.15 , 2020 https://doi.org/10.1371/journal.pone.0240348 Citation Details2020
27.Liu, Qian and Harris, Jackson T. and Chiu, Long S. and Sun, Donglian and Houser, Paul R. and Yu, Manzhu and Duffy, Daniel Q. and Little, Michael M. and Yang, Chaowei “Spatiotemporal impacts of COVID-19 on air pollution in California, USA” Science of The Total Environment , v.750 , 2021 https://doi.org/10.1016/j.scitotenv.2020.141592 Citation Details2020
28.Li, Yun and Horowitz, Melanie Alfonzo and Liu, Jiakang and Chew, Aaron and Lan, Hai and Liu, Qian and Sha, Dexuan and Yang, Chaowei “Individual-Level Fatality Prediction of COVID-19 Patients Using AI Methods” Frontiers in Public Health , v.8 , 2020 https://doi.org/10.3389/fpubh.2020.587937 Citation Details2020
29.Sha, Dexuan and Malarvizhi, Anusha Srirenganathan and Liu, Qian and Tian, Yifei and Zhou, You and Ruan, Shiyang and Dong, Rui and Carte, Kyla and Lan, Hai and Wang, Zifu and Yang, Chaowei “A State-Level Socioeconomic Data Collection of the United States for COVID-19 Research” Data , v.5 , 2020 https://doi.org/10.3390/data5040118 Citation Details2020
30.Zhang, Zhiran and Sha, Dexuan and Dong, Beidi and Ruan, Shiyang and Qiu, Agen and Li, Yun and Liu, Jiping and Yang, Chaowei “Spatiotemporal Patterns and Driving Factors on Crime Changing During Black Lives Matter Protests” ISPRS International Journal of Geo-Information , v.9 , 2020 https://doi.org/10.3390/ijgi9110640 Citation Details2020
31.Liu, Qian and Liu, Wei and Sha, Dexuan and Kumar, Shubham and Chang, Emily and Arora, Vishakh and Lan, Hai and Li, Yun and Wang, Zifu and Zhang, Yadong and Zhang, Zhiran and Harris, Jackson T. and Chinala, Srikar and Yang, Chaowei “An Environmental Data Collection for COVID-19 Pandemic Research” Data , v.5 , 2020 https://doi.org/10.3390/data5030068 Citation Details2020
32.Li, Y. “A Query Understanding Framework for Earth Data Discovery.” Applied Sciences , v.10 , 2020 Citation Details2020
33.Yu, Manzhu “A Graph-Based Spatiotemporal Data Framework for 4D Natural Phenomena Representation and Quantification?An Example of Dust Events” ISPRS International Journal of Geo-Information , v.9 , 2020 https://doi.org/10.3390/ijgi9020127 Citation Details2020
34.Li, Yun and Jiang, Yongyao and Goldstein, Justin C. and Mcgibbney, Lewis J. and Yang, Chaowei “A Query Understanding Framework for Earth Data Discovery” Applied Sciences , v.10 , 2020 https://doi.org/10.3390/app10031127 Citation Details2020
35.Hu, Tao and Guan, Weihe Wendy and Zhu, Xinyan and Shao, Yuanzheng and Liu, Lingbo and Du, Jing and Liu, Hongqiang and Zhou, Huan and Wang, Jialei and She, Bing and Zhang, Luyao and Li, Zhibin and Wang, Peixiao and Tang, Yicheng and Hou, Ruizhi and Li, Yun “Building an Open Resources Repository for Covid-19 Research” SSRN Electronic Journal , 2020 https://doi.org/10.2139/ssrn.3587704 Citation Details2020
36.Sha, Dexuan and Liu, Yi and Liu, Qian and Li, Yun and Tian, Yifei and Beaini, Fayez and Zhong, Cheng and Hu, Tao and Wang, Zifu and Lan, Hai and Zhou, You and Zhang, Zhiran and Yang, Chaowei “A spatiotemporal data collection of viral cases for COVID-19 rapid response” Big Earth Data , 2020 https://doi.org/10.1080/20964471.2020.1844934 Citation Details2020
37.Hu, Tao and She, Bing and Duan, Lian and Yue, Han and Clunis, Julaine “A Systematic Spatial and Temporal Sentiment Analysis on Geo-Tweets” IEEE Access , v.8 , 2020 https://doi.org/10.1109/ACCESS.2019.2961100 Citation Details2020
38.Liu, Qian and Sha, Dexuan and Liu, Wei and Houser, Paul and Zhang, Luyao and Hou, Ruizhi and Lan, Hai and Flynn, Colin and Lu, Mingyue and Hu, Tao and Yang, Chaowei “Spatiotemporal Patterns of COVID-19 Impact on Human Activities and Environment in China Using Nighttime Light and Air Quality Data” Remote sensing , v.12 , 2020 https://doi.org/ Citation Details2020
39.Yang, Chaowei and Sha, Dexuan and Liu, Qian and Li, Yun and Lan, Hai and Guan, Weihe Wendy and Hu, Tao and Li, Zhenlong and Zhang, Zhiran and Thompson, John Hoot and Wang, Zifu and Wong, David and Ruan, Shiyang and Yu, Manzhu and Richardson, Douglas and Z “Taking the pulse of COVID-19: a spatiotemporal perspective” International Journal of Digital Earth , v.13 , 2020 https://doi.org/10.1080/17538947.2020.1809723 Citation Details2020
40.Guan, Weihe Wendy and Hess, Elizabeth “Understanding the Ecosystem of Geospatial Research and Service in Universities” Journal of Map & Geography Libraries , 2020 https://doi.org/10.1080/15420353.2020.1765942 Citation Details2020
1.Aminollah Khormali, Ahmed Abusnaina “COPYCAT: Practical Adversarial Attacks on Visualization-Based Malware Detection” arXivorg , 2019 Citation Details2019
2.Wei, Yijun and Yang, Ruixin and Sun, Donglian “Investigating Tropical Cyclone Rapid Intensification with an Advanced Artificial Intelligence System and Gridded Reanalysis Data” Atmosphere , v.14 , 2023 https://doi.org/10.3390/atmos14020195 Citation Details2019
3.Yang, Chaowei and Clarke, Keith and Shekhar, Shashi and Tao, C. Vincent “Big Spatiotemporal Data Analytics: a research and innovation frontier” International Journal of Geographical Information Science , 2019 https://doi.org/10.1080/13658816.2019.1698743 Citation Details2019
4.Zhao, Liang and Chen, Feng and Ye, Yanfang “Efficient Learning with Exponentially-Many Conjunctive Precursors to Forecast Spatial Events” IEEE Transactions on Knowledge and Data Engineering , 2019 https://doi.org/10.1109/TKDE.2019.2912187 Citation Details2019
5.Yu, Manzhu and Huang, Qunying and Qin, Han and Scheele, Chris and Yang, Chaowei “Deep learning for real-time social media text classification for situation awareness ? using Hurricanes Sandy, Harvey, and Irma as case studies” International Journal of Digital Earth , v.12 , 2018 10.1080/17538947.2019.1574316 Citation Details2019
6.Li, Yun and Jiang, Yongyao and Gu, Juan and Lu, Mingyue and Yu, Manzhu and Armstrong, Edward and Huang, Thomas and Moroni, David and McGibbney, Lewis and Frank, Greguska and Yang, Chaowei “A Cloud-Based Framework for Large-Scale Log Mining through Apache Spark and Elasticsearch” Applied Sciences , v.9 , 2019 10.3390/app9061114 Citation Details2019
7.Armstrong, Edward M. and Bourassa, Mark A. and Cram, Thomas A. and DeBellis, Maya and Elya, Jocelyn and Greguska, Frank R. and Huang, Thomas and Jacob, Joseph C. and Ji, Zaihua and Jiang, Yongyao and Li, Yun and Quach, Nga and McGibbney, Lewis and Smith, “An Integrated Data Analytics Platform” Frontiers in Marine Science , v.6 , 2019 10.3389/fmars.2019.00354 Citation Details2019
8.Yang, Jingchao and Yu, Manzhu and Qin, Han and Lu, Mingyue and Yang, Chaowei “A Twitter Data Credibility Framework?Hurricane Harvey as a Use Case” ISPRS International Journal of Geo-Information , v.8 , 2019 10.3390/ijgi8030111 Citation Details2019
9.Hu, Fei and Li, Zhenlong and Yang, Chaowei and Jiang, Yongyao “A graph-based approach to detecting tourist movement patterns using social media data” Cartography and Geographic Information Science , v.46 , 2019 10.1080/15230406.2018.1496036 Citation Details2019
10.Shams, Ishan and Li, Yun and Yang, Jingchao and Yu, Manzhu and Yang, Chaowei and Bambacus, Myra and Lewis, Ruthan and Nuth, Joseph A. and Oman, Luke and Leung, Ronald and Seery, Bernard D. and Plesko, Catherine and Greenaugh, Kevin C. and Syal, Megan B. “Planetary Defense Mitigation Gateway: A One-Stop Gateway for Pertinent PD-Related Contents” Data , v.4 , 2019 10.3390/data4020047 Citation Details2019
11.Wang, An and Zha, Zili and Guo, Yang and Chen, Songqing “A SDN-based network layer for edge computing: poster” Proceedings of the 4th ACM/IEEE Symposium on Edge Computing , 2019 10.1145/3318216.3363333 Citation Details2019
12.Sun, Donglian and Li, Yu and Zhan, Xiwu and Houser, Paul and Yang, Chaowei and Chiu, Long and Yang, Ruixin “Land Surface Temperature Derivation under All Sky Conditions through Integrating AMSR-E/AMSR-2 and MODIS/GOES Observations” Remote Sensing , v.11 , 2019 10.3390/rs11141704 Citation Details2019
13.Sun, Donglian and Li, Yu and Zhan, Xiwu and Yang, Chaowei and Yang, Ruixin “Integrating optical and microwave satellite observations for high res-olution soil moisture estimate and applications in CONUS drought analyses” Journal of Geography and Cartography , v.4 , 2019 https://doi.org/10.24294/jgc.v4i1.1313 Citation Details2019
14.Liu, Naiwei and Zang, Wanyu and Chen, Songqing and Yu, Meng and Sandhu, Ravi “Adaptive Noise Injection against Side-Channel Attacks on ARM Platform” ICST Transactions on Security and Safety , v.6 , 2019 https://doi.org/10.4108/eai.25-1-2019.159346 Citation Details2019
15.Xu, Yongming and Lewis, Benjamin and Guan, Weihe Wendy “Developing the Chinese Academic Map Publishing Platform” ISPRS International Journal of Geo-Information , v.8 , 2019 10.3390/ijgi8120567 Citation Details2019
1.Yu, Manzhu and Huang, Qunying and Qin, Han and Scheele, Chris and Yang, Chaowei “Deep learning for real-time social media text classification for situation awareness ? using Hurricanes Sandy, Harvey, and Irma as case studies” International Journal of Digital Earth , v.12 , 2018 10.1080/17538947.2019.1574316 Citation Details
2018
2.Sun, Donglian and Li, Yu and Zhan, Xiwu and Yang, Chaowei and Yang, Ruixin “Integrating Optical and Microwave Satellite Observations for High Resolution Soil Moisture Estimate and Applications in CONUS Drought Analyses” Remote Sensing , v.7 , 2018 10.18282/rs.v7i1.500 Citation Details2018
45.Jiang, Y., Yang, C. P., Armstrong, E. M., Huang, T., Moroni, D. F., McGibbney, L. J., & Greguska III, F. R. (2017, December). Optimizing Earth Data Search Ranking using Deep Learning and Real-time User Behaviour. In AGU Fall Meeting Abstracts.2017
46.Xu, M., Hu, F., Yang, J., Yu, M., & Yang, C. P. (2017, December). Data Container Study for Handling array-based data using Hive, Spark, MongoDB, SciDB and Rasdaman. In AGU Fall Meeting Abstracts.2017
47.Li, Y., Jiang, Y., Yang, C. P., Armstrong, E. M., Huang, T., Moroni, D. F., … & McGibbney, L. J. (2017, December). A Geospatial Data Recommender System based on Metadata and User Behaviour. In AGU Fall Meeting Abstracts.2017
48.Armstrong, E. M., Yang, C. P., Moroni, D. F., McGibbney, L. J., Jiang, Y., Huang, T., … & Finch, C. J. (2017, December). Building a better search engine for earth science data. In AGU Fall Meeting Abstracts.2017
49.Yang, C. P., Bambacus, M., Duffy, D., & Little, M. M. (2017, December). A Big Data Platform for Storing, Accessing, Mining and Learning Geospatial Data. In AGU Fall Meeting Abstracts.2017
50.Jiang, Y., Li, Y., Yang, C., Liu, K., Armstrong, E. M., Huang, T., … & Finch, C. J. (2017). A comprehensive methodology for discovering semantic relationships among geospatial vocabularies using oceanographic data discovery as an example. International Journal of Geographical Information Science, 31(11), 2310-2328.2017
51.Li, Y., Yang, R., Yang, C., Yu, M., Hu, F., & Jiang, Y. (2017). Leveraging LSTM for rapid intensifications prediction of tropical cyclones. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 4.2017
52.Jiang, Y., Li, Y., Yang, C., Hu, F., Armstrong, E. M., Huang, T., … & Finch, C. J. (2017). Towards intelligent geospatial data discovery: a machine learning framework for search ranking. International Journal of Digital Earth, 1-16.2017
53.Bambacus, M., Yang, C. P., Leung, R. Y., Barbee, B., Nuth, J. A., Seery, B., … & Xu, M. (2017). A Planetary Defense Gateway for Smart Discovery of relevant Information for Decision Support.2017
54.Yu, M., & Yang, C. (2017). A 3D multi-threshold, region-growing algorithm for identifying dust storm features from model simulations. International Journal of Geographical Information Science, 31(5), 939-961.2017
55.Yang, C. (2017). Introduction to GIS Programming and Fundamentals with Python and ArcGIS®. CRC Press.2017
56.Yang, C. P., Yu, M., Xu, M., Jiang, Y., Qin, H., Li, Y., … & Seery, B. (2017, March). An architecture for mitigating near earth object’s impact to the earth. In Aerospace Conference, 2017 IEEE (pp. 1-13). IEEE.2017
57.Yang, C., Huang, Q., Li, Z., Liu, K., & Hu, F. (2017). Big Data and cloud computing: innovation opportunities and challenges. International Journal of Digital Earth, 10(1), 13-53.2017
58.Li, Z., Hu, F., Schnase, J. L., Duffy, D. Q., Lee, T., Bowen, M. K., & Yang, C. (2017). A spatiotemporal indexing approach for efficient processing of big array-based climate data with MapReduce. International Journal of Geographical Information Science, 31(1), 17-35.2017
59.Yang, C., Yu, M., Hu, F., Jiang, Y., & Li, Y. (2017). Utilizing cloud computing to address big geospatial data challenges. Computers, Environment and Urban Systems, 61, 120-128.2017
60.Li, Z., Yang, C., Huang, Q., Liu, K., Sun, M., & Xia, J. (2017). Building Model as a Service to support geosciences. Computers, Environment and Urban Systems, 61, 141-152.2017
61.Züfle, A., Trajcevski, G., Pfoser, D., Renz, M., Rice, M. T., Leslie, T., … & Emrich, T. (2017, April). Handling uncertainty in geo-spatial data. In Data Engineering (ICDE), 2017 IEEE 33rd International Conference on (pp. 1467-1470). IEEE.2017
62.Fayne, J. V., Bolten, J. D., Doyle, C. S., Fuhrmann, S., Rice, M. T., Houser, P. R., & Lakshmi, V. (2017). Flood mapping in the lower Mekong River Basin using daily MODIS observations. International journal of remote sensing, 38(6), 1737-1757.2017
63.Shortridge, A. M., Fayne, J. V., & Rice, M. T. (2017). Modeling Uncertainty in Digital Elevation Models. The International Encyclopedia of Geography.2017
64.Pettitt, A., & Fuhrmann, S. (2017). The Robinson House in the AR-Based Manassas Battlefield National Park Experience. i-com, 16(3), 215-222.2017
65.Dailey, L. A., & Fuhrmann, S. (2017). GIS-Based Logistic Regression for Landslide Susceptibility Analysis in Western Washington State. International Journal of Applied Geospatial Research (IJAGR), 8(2), 1-19.2017
66.Fayne, J. V., Bolten, J. D., Doyle, C. S., Fuhrmann, S., Rice, M. T., Houser, P. R., & Lakshmi, V. (2017). Flood mapping in the lower Mekong River Basin using daily MODIS observations. International journal of remote sensing, 38(6), 1737-1757.2017
67.Zheng, W., Sun, D., & Li, S. (2017). Mapping coastal floods induced by hurricane storm surge using ATMS data. International Journal of Remote Sensing, 38(23), 6846-6864.2017
68.Li, S., Sun, D., Goldberg, M., Sjoberg, W., Santek, D., & Hoffman, J. (2017, December). Introduction to SNPP/VIIRS Flood Mapping Software Version 1.0. In AGU Fall Meeting Abstracts.2017
69.Hu, T., Cao, B., Du, Y., Li, H., Wang, C., Bian, Z., … & Liu, Q. (2017). Estimation of Surface Upward Longwave Radiation Using a Direct Physical Algorithm. IEEE Transactions on Geoscience and Remote Sensing, 55(8), 4412-4426.2017
70.DeWeese, M., Li, S., Sun, D., Goldberg, M., & Sjoberg, B. (2017, July). Application of suomi-npp/viirs data in near real time flood detection. In Geoscience and Remote Sensing Symposium (IGARSS), 2017 IEEE International (pp. 2790-2793). IEEE.2017
71.Benjamin Lewis, Weihe Wendy Guan and Alenka Poplin. Evaluating the Current State of Geospatial Software as a Service Platforms: A Comparison Study. In Citizen Empowered Mapping. Michael Leitner and Jamal Jokar Arsanjani eds. Springer. June 2017.2017
72.Blodgett, D., Rea, A., and Lieberman, J., “The future of hydrography from the perspective of David Blodgett, USGS; Alan Rea, USGS; and Joshua Lieberman, Harvard CGA”, in “GIS for Surface Water”, Simley, J. ed., 2017, ESRI Press, Redlands.2017
73.Cortia, P. and Lewis, B., “Making temporal search more central in spatial data infrastructures.” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017. 2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA.2017
74.Kakkar, D. and Lewis, B., “Building a billion spatio-temporal object search and visualization platform.” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017. 2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA.2017
75.Devika Kakkar, Ben Lewis, David Smiley and Ariel Nunez. The Billion Object Platform (BOP): a system to lower barriers to support big, streaming, spatio-temporal data sources. FOSS4G, Boston, Massachusetts, August 18, 2017. http://gis.harvard.edu/publications/billion-object-platform-bop-streaming-spatio-temporal-data-sources.2017
76.Lieberman, J., Bermudez, L., Leinenweber, L., Botts,M., and Liang, S., “Rapid-response sensor networks leveraging open standards and the Internet of Things”, January 2017, Earth Science Information Partners Winter Meeting, Bethesda2017
77.Benjamin Lewis, Paolo Corti and Wendy Guan. Harvard Hypermap: An Open Source Framework for Making the World’s Geospatial Information more Accessible. AAG Annual Meeting. Boston, Massachusetts. April 2017. http://gis.harvard.edu/publications/harvard-hypermap-open-source-framework-making-world%E2%80%99s-geospatial-information-more2017
78.Lieberman, J., “Applications for a Surface Hydro Ontology and Linked Data Model”, April 2017, AAG Annual Meeting Boston2017
79.Gonzalez, B., “A Statistical Analysis for Linked Data”, April 2017, AAG Annual Meeting Boston2017
80.Zhang, M., Lieberman, J. “An ontology-driven and service-enabled scientific workflow platform for geoprocessing”, April 2017, AAG Annual Meeting Boston2017
81.Merrick Lex Berman, Devika Kakkar, Wendy Guan, and Fei Carnes. Enabling Spatiotemporal Analysis and Visualization of Air Pollution in China and India. The 25th International Conference on Geoinformatics. Buffalo, NY. August 3, 2017. http://gis.harvard.edu/publications/enabling-spatiotemporal-analysis-and-visualization-air-pollution-china-and-india2017
82.Paolo Corti and Ben Lewis. Making Temporal Search Central in a Spatial Data Infrastructure. Second International Symposium on Spatiotemporal Computing. Cambridge, Massachusetts. August 7, 2017. http://gis.harvard.edu/publications/making-temporal-search-central-spatial-data-infrastructure2017
83.Devika Kakkar and Ben Lewis. Building a Billion Spatio-Temporal Object Search and Visualization Platform. Oral presentation in the Second International Symposium on Spatiotemporal Computing, Cambridge, Massachusetts, August 8, 2017. http://gis.harvard.edu/publications/building-open-source-real-time-billion-object-spatio-temporal-search-plaform.2017
84.Lieberman, J. “SWE-IoT-based spatiotemporal access to critical sensor data using ad hoc sensor hub constellations”, August 2017, Second International Symposium on Spatiotemporal Computing, Boston2017
85.Zhang, M., Lieberman, J., and Yue, P., “An ontology for processing service orchestration”, August 2017, Sixth International Conference on Agro-Geoinformatics, Fairfax2017
86.Paolo Corti, Ben Lewis and Devika Kakkar. Building SDIs and geoportals with GeoNode and a search engine. FOSS4G, Cambridge, Massachusetts. August 15, 2017. http://gis.harvard.edu/publications/building-sdis-and-geoportals-geonode-and-search-engine2017
87.Paolo Corti, Ben Lewis and Ariel Nunez. Maintaining Spatial Data Infrastructures (SDIs) using distributed task queues. FOSS4G, Boston, Massachusetts. August 16, 2017 http://gis.harvard.edu/publications/maintaining-spatial-data-infrastructures-sdis-using-distributed-task-queues2017
88.Simone Dalmasso, Francesco Bartoli, Paolo Corti, Jeffrey Johnson and Ariel Núñez. The State of GeoNode. FOSS4G. Boston, Massachusetts. August 16, 20172017
89.Clarke, K. C. and Irmischer, I. J. (2017) On Scale in Space, Time, and Space–Time. In: Dale A. Quattrochi, Elizabeth Wentz, Nina Siu-Ngan Lam, Charles W. Emerson (eds) Integrating Scale in Remote Sensing and GIS, CRC Press.2017
90.Su Yeon Han, Ming-Hsiang Tsou & Keith C. Clarke (2017): Revisiting the death of geography in the era of Big Data: the friction of distance in cyberspace and real space, International Journal of Digital Earth, DOI: 10.1080/17538947.2017.1330366.2017
91.Park, S., Clarke, K.C.. Choi, C. and Kim, J. (2017) Simulating Land Use Change in the Seoul Metropolitan Area after Greenbelt Elimination Using the SLEUTH Model, Journal of Sensors, vol. 2017, Article ID 4012929. doi:10.1155/2017/40129292017
92.Wu, H., Yin, Y., Wang, S. , Shi, W., Clarke, K.C., and Miao, Z. (2017) Optimizing GPS-guidance transit route for cable crane collision avoidance using artificial immune algorithm. GPS Solutions 21, 2, 1, 823-834.2017
93.Clarke, K. (2017). Cellular Automata. The Geographic Information Science & Technology Body of Knowledge (3rd Quarter 2017 Edition), John P. Wilson (ed.). doi: 10.22224/gistbok/2017.3.9.2017
94.Han, S. Clarke, K. C. and Tsou, M-H (2017) Animated Flow Maps for Visualizing Human Movement: Two Demonstrations with Air Traffic and Twitter Data Proceedings, 1st ACM SIGSPATIAL Workshop. DOI: 10.1145/3148044.31480492017
95.Jiangxia Ye, Mingshan Wu, Zhongjian Deng, Shengji Xu , Ruliang Zhou and Keith C. Clarke (2017) Modeling the spatial patterns of human wildfire ignition in Yunnan province, China. Applied Geography. 89, 150–162. https://doi.org/10.1016/j.apgeog.2017.09.0122017
96.Yu, M., & Yang, C. (2016). Improving the Non-Hydrostatic Numerical Dust Model by Integrating Soil Moisture and Greenness Vegetation Fraction Data with Different Spatiotemporal Resolutions. PloS one, 11(12), e0165616.2016
97.Li, Z., Yang, C., Liu, K., Hu, F., & Jin, B. (2016). Automatic scaling hadoop in the cloud for efficient process of big geospatial data. ISPRS International Journal of Geo-Information, 5(10), 173.2016
98.Vance, T. C., Merati, N., Yang, C., & Yuan, M. (2016, September). Cloud computing for ocean and atmospheric science. In OCEANS 2016 MTS/IEEE Monterey (pp. 1-4). IEEE.2016
99.Li, Y., Jiang, Y., Hu, F., Yang, C., Huang, T., Moroni, D., & Fench, C. (2016, September). Leveraging cloud computing to speedup user access log mining. In OCEANS 2016 MTS/IEEE Monterey (pp. 1-6). IEEE.2016
100.Vance, T. C., Merati, N., Yang, C., & Yuan, M. (Eds.). (2016). Cloud Computing in Ocean and Atmospheric Sciences. Elsevier.2016
101.Jiang, Y., Sun, M., & Yang, C. (2016). A generic framework for using multi-dimensional earth observation data in GIS. Remote Sensing, 8(5), 382.2016
102.Jiang, Y., Li, Y., Yang, C., Armstrong, E. M., Huang, T., & Moroni, D. (2016). Reconstructing sessions from data discovery and access logs to build a semantic knowledge base for improving data discovery. ISPRS International Journal of Geo-Information, 5(5), 54.2016
103.Gui, Z., Yu, M., Yang, C., Jiang, Y., Chen, S., Xia, J., … & Jin, B. (2016). Developing Subdomain Allocation Algorithms Based on Spatial and Communicational Constraints to Accelerate Dust Storm Simulation. PloS one, 11(4), e0152250.2016
104.Zheng, L., Yu, M., Song, M., Stefanidis, A., Ji, Z., & Yang, C. (2016). Registration of Long-Strip Terrestrial Laser Scanning Point Clouds Using RANSAC and Closed Constraint Adjustment. Remote Sensing, 8(4), 278.2016
105.Seery, B. D., Bambacus, M., Leung, R., Greenaugh, K., Raccah, F., Boslough, M., & Yang, C. P. (2016, March). Near Earth object mitigation studies. In Aerospace Conference, 2016 IEEE (pp. 1-12). IEEE.2016
106.Hu, F., Yang, C. P., Duffy, D., Schnase, J. L., & Li, Z. (2016, February). ClimateSpark: An In-memory Distributed Computing Framework for Big Climate Data Analytics. In AGU Fall Meeting Abstracts.2016
107.Lynnes, C., Little, M. M., Huang, T., Jacob, J. C., Yang, C. P., & Kuo, K. S. (2016, February). Benchmark Comparison of Cloud Analytics Methods Applied to Earth Observations. In AGU Fall Meeting Abstracts.2016
108.Yang, C. P. (2016, February). A Hybrid Cloud Computing Service for Earth Sciences. In AGU Fall Meeting Abstracts.2016
109.Duffy, D., Spear, C., Bowen, M., Thompson, J., Hu, F., Yang, C., & Pierce, D. (2016, February). Emerging Cyber Infrastructure for NASA’s Large-Scale Climate Data Analytics. In AGU Fall Meeting Abstracts.2016
110.Yang, C. P. (2016, February). Advancing Geoscience Resource Discovery with Cutting-Edge Cyberinfrastructure Technologies. In AGU Fall Meeting Abstracts.2016
111.Houet, T., Aguejdad, R., Doukari, O., Battaia G. and Clarke, K. (2016) “Description and validation of a ‘non path-dependent’ model for projecting contrasting urban growth futures”, Cybergeo : European Journal of Geography, Systèmes, Modélisation, Géostatistiques, document 759 http://cybergeo.revues.org/27397 ; DOI : 10.4000/cybergeo.273972016
112.A Knowledge Discovery framework for Planetary Defense2016
113.Xu, M., Hu, F., Yu, M., Scheele, C., Liu, K., Huang, Q., … & Little, M. M. (2016, February). Data Container Study for Handling Array-based Data Using Rasdaman, Hive, Spark, and MongoDB. In AGU Fall Meeting Abstracts.2016
114.Jiang, Y., Yang, C., Xia, J., & Liu, K. (2016). Polar CI Portal: A Cloud-based Polar Resource Discovery Engine. In Cloud Computing in Ocean and Atmospheric Sciences (pp. 163-185).2016
115.Wang, M., Liu, Q., Inoue, T., Li, B., Pottish, S., Wood, J., … & Tao, R. (2016). The K2CO3 fusion curve revisited: New experiments at pressures up to 12 GPa. Journal of Mineralogical and Petrological Sciences, 111(4), 241-251.2016
116.Liu, K., Yang, C., Li, W., Gui, Z., Xu, C., & Xia, J. (2016). Using semantic search and knowledge reasoning to improve the discovery of earth science records: An example with the ESIP semantic testbed. In Mobile Computing and Wireless Networks: Concepts, Methodologies, Tools, and Applications (pp. 1375-1389). IGI Global.2016
117.Aburizaiza, A. O., & Rice, M. T. (2016). Geospatial footprint library of geoparsed text from geocrowdsourcing. Spatial Information Research, 24(4), 409-420.2016
118.Rice, R. M., Aburizaiza, A. O., Rice, M. T., & Qin, H. (2016). Position validation in crowdsourced accessibility mapping. Cartographica: The International Journal for Geographic Information and Geovisualization, 51(2), 55-66.2016
119.Qin, H., Rice, R. M., Fuhrmann, S., Rice, M. T., Curtin, K. M., & Ong, E. (2016). Geocrowdsourcing and accessibility for dynamic environments. GeoJournal, 81(5), 699-716.2016
120.Hu, T., Du, Y., Cao, B., Li, H., Bian, Z., Sun, D., & Liu, Q. (2016). Estimation of upward longwave radiation from vegetated surfaces considering thermal directionality. IEEE Transactions on Geoscience and Remote Sensing, 54(11), 6644-6658.2016
121.Zheng, W., Sun, D., & Li, S. (2016, July). Coastal flood monitoring based on AMSR-E data. In Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International (pp. 4399-4401). IEEE.2016
122.Sun, D., Li, S., Zheng, W., Croitoru, A., Stefanidis, A., & Goldberg, M. (2016). Mapping floods due to Hurricane Sandy using NPP VIIRS and ATMS data and geotagged Flickr imagery. International Journal of Digital Earth, 9(5), 427-441.2016
123.Merrick Lex Berman, Ruth Mostern, Humphrey Southall, edited. Placing Names: Enriching and Extending Gazetteers. Indiana University Press. The Spatial Humanities Series. August 4, 2016.2016
124.Corti, P., Lewis, B., Kralidis, A. T. and Mwenda, N. J., “Implementing an open source spatio-temporal search platform for Spatial Data Infrastructures.” PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2238v7 | CC BY 4.0 Open Access | rec: 3 Oct 2016, publ: 3 Oct 20162016
125.Josh Lieberman, “Ontological Representation of Physical Feature Networks”, 2016, AAG Meeting.2016
126.Josh Lieberman, “Development and Application of a Linked Data Model for NHD and Related Datasets” poster presentation at CUAHSI 2016 Symposium.2016
127.Benjamin Lewis, David Strohschein, Paolo Corti, David Smiley. Building an Open Source, Real-Time, Billion Object Spatio-Temporal Search Plaform. International Workshop on Cloud Computing and Big Data. Fairfax, VA. July 2016. http://gis.harvard.edu/publications/building-open-source-real-time-billion-object-spatio-temporal-search-plaform2016
128.Paolo Corti and Ben Lewis. Implementing an Open Source Spatiotemporal Search Platform for Spatial Data Infrastructures. Open Source Geospatial Research & Education Symposium. Perugia, Italy. October 2016. http://gis.harvard.edu/publications/implementing-open-source-spatiotemporal-search-platform-spatial-data-infrastructures2016
129.Paolo Corti and Ben Lewis. Status of WorldMap. GeoNode Summit. Rome, Italy. November 11, 2016. http://gis.harvard.edu/publications/status-worldmap-20162016
130.Lieberman, J., Bermudez, L., Leinenweber, L., Botts,M., and Liang, S., “Rapid-response sensor networks leveraging open standards and the Internet of Things”, December 2016, American Geophysical Union Fall Meeting, San Francisco2016
131.Berberoğlu, S, Akın, A. and Clarke, K. C. (2016) Cellular automata modeling approaches to forecast urban growth for Adana, Turkey: A comparative approach. Landscape and Urban Planning. 153, 11–27. doi:10.1016/j.landurbplan.2016.04.0172016
132.Nittel, Bodum, Clarke, Gould, Raposo, Sharma and Vasardani (2016) CHAPTER 3: Emerging Technological Trends Likely to Affect GIScience in the Next Twenty Years. In Advancing Geographic Information Science: The Past and Next Twenty Years, Editors: Harlan Onsrud, Werner Kuhn. GSDI Association Press / Needham, MA. Available online at: https://spatial.umaine.edu/files/2016/02/AdvancingGIScience.pdf2016
133.Hu, F., Bowen, M. K., Li, Z., Schnase, J. L., Duffy, D., Lee, T. J., & Yang, C. P. (2015, December). A Columnar Storage Strategy with Spatiotemporal Index for Big Climate Data. In AGU Fall Meeting Abstracts.2015
134.Yu, M., Piccione, M., Sun, M., Yang, C. P., Bambacus, M., & Seery, B. (2015, December). Develop an Architecture to Enable Effective Information Process in Mitigating Asteroid’s Threat. In AGU Fall Meeting Abstracts.2015
135.Hu, F., Huang, Q., Scheele, C. J., Yang, C. P., Yu, M., & Liu, K. (2015, December). Rasdaman for Big Spatial Raster Data. In AGU Fall Meeting Abstracts.2015
136.Yang, C. P., Yu, M., Sun, M., Qin, H., & Robinson, E. (2015, December). DAsHER CD: Developing a Data-Oriented Human-Centric Enterprise Architecture for EarthCube. In AGU Fall Meeting Abstracts.2015
137.Xia, J., Yang, C., Liu, K., Gui, Z., Li, Z., Huang, Q., & Li, R. (2015). Adopting cloud computing to optimize spatial web portals for better performance to support Digital Earth and other global geospatial initiatives. International Journal of Digital Earth, 8(6), 451-475.2015
138.Li, Z., Yang, C., Jin, B., Yu, M., Liu, K., Sun, M., & Zhan, M. (2015). Enabling big geoscience data analytics with a cloud-based, MapReduce-enabled and service-oriented workflow framework. PloS one, 10(3), e0116781.2015
139.Xia, J., Yang, C., Liu, K., Li, Z., Sun, M., & Yu, M. (2015). Forming a global monitoring mechanism and a spatiotemporal performance model for geospatial services. International Journal of Geographical Information Science, 29(3), 375-396.2015
140.Li, M., Liu, H., & Yang, C. (2015). a Real-Time GIS Platform for High Sour Gas Leakage Simulation, Evaluation and Visualization. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(4), 225.2015
141.Yang, C., Sun, M., Liu, K., Huang, Q., Li, Z., Gui, Z., … & Lostritto, P. (2015). Contemporary computing technologies for processing big spatiotemporal data. In Space-time integration in geography and GIScience (pp. 327-351). Springer, Dordrecht.2015
142.Rice, M. T., Curtin, K. M., Pfoser, D., Rice, R. M., Fuhrmann, S., Qin, H., … & Seitz, C. R. (2015). Social moderation and dynamic elements in crowdsourced geospatial data: A report on quality assessment, dynamic extensions and mobile device engagement in the George Mason University Geocrowdsourcing Testbed. George Mason University Fairfax United States.2015
143.Qin, H., Aburizaiza, A. O., Rice, R. M., Paez, F., & Rice, M. T. (2015). OBSTACLE CHARACTERIZATION IN A GEOCROWDSOURCED ACCESSIBILITY SYSTEM. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2.2015
144.Bevington-Attardi, D., & Rice, M. (2015). On the map: American cartography in 2015.2015
145.Fayne, J. V., Fuhrmann, S., Rice, M. T., & Rice, R. M. (2015). Exploring alternative map products to enhance transportation option awareness. Cartography and Geographic Information Science, 42(4), 345-357.2015
146.Qin, H., Rice, R. M., Fuhrmann, S., Rice, M. T., Curtin, K. M., & Ong, E. (2016). Geocrowdsourcing and accessibility for dynamic environments. GeoJournal, 81(5), 699-716.2015
147.Aburizaiza, A. O., Rice, M. T., & Goodchild, M. F. (2015). Generating Geospatial Footprints For Geoparsed Text From Crowdsourced Platial Data. In Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings (Vol. 15, No. 1, p. 49).2015
148.Rice, M. T., Curtin, K. M., Pfoser, D., Rice, R. M., Fuhrmann, S., Qin, H., … & Seitz, C. R. (2015). Social moderation and dynamic elements in crowdsourced geospatial data: A report on quality assessment, dynamic extensions and mobile device engagement in the George Mason University Geocrowdsourcing Testbed. George Mason University Fairfax United States.2015
149.Fuhrmann, S., Holzbach, M. E., & Black, R. (2015). Developing interactive geospatial holograms for spatial decision-making. Cartography and Geographic Information Science, 42(sup1), 27-33.2015
150.Fayne, J. V., Fuhrmann, S., Rice, M. T., & Rice, R. M. (2015). Exploring alternative map products to enhance transportation option awareness. Cartography and Geographic Information Science, 42(4), 345-357.2015
151.Li, S., Sun, D., Goldberg, M., Sjoberg, B., Plumb, E. W., Holloway, E., … & Kreller, M. (2015, December). Application of Snpp/viirs Data in Near Real-Time Supra-Snow Flood Detection. In AGU Fall Meeting Abstracts.2015
152.Li, S., Sun, D., Goldberg, M. E., & Sjoberg, B. (2015). Object-based automatic terrain shadow removal from SNPP/VIIRS flood maps. International Journal of Remote Sensing, 36(21), 5504-5522.2015
153.Sun, D., Yu, Y., Yang, H., Fang, L., Liu, Q., & Shi, J. (2015). A case study for intercomparison of land surface temperature retrieved from GOES and MODIS. International Journal of Digital Earth, 8(6), 476-494.2015
154.Zambotti, G., W. Guan and J. Gest, “Visualizing Human Migration through Space and Time”, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-4/W2, 2015, International Workshop on Spatiotemporal Computing, 13–15 July 2015, Fairfax, Virginia, USA.2015
155.Lieberman, J. (contributor), Habona, G. (editor), “Use of Semantic Linked Data with RDF for National Map NHD and Gazetteer Data”, 2015, OGC Public Engineering Report 15-0662015
156.Lieberman, J. (contributor), Fellah, S. (editor), “Linked Data & Semantic Enablement of OGC Services”, 2015, OGC Public Engineering Report 15-0542015
157.Wendy Guan, Investigating Hadoop for Large Spatiotemporal Processing Tasks, oral presentation in the Paper Session: Spatiotemporal Symposium: Big Data Sciences at AAG 2015 Annual Meeting in April 2015 at Chicago2015
158.Josh Lieberman, Spatial reification or how can I know the refrigerator is open, position paper accepted to 2015 Vespucci Institute on Spatial Ontologies.2015
159.Josh Lieberman, “Semantic modeling of Physical Relationships”, Vespucci Institute on Spatial Ontologies, 2015, Bar Harbor.2015
160.Josh Lieberman, “NHD Ontologies”, 2015, Third CUAHSI Hydroinformatics Conference.2015
161.Josh Lieberman, Cheatham, M., Varanka, D., “Application of Alignment Methodologies to Spatial Ontologies in the Hydro Domain”, 2015, AGU Fall Meeting.2015
162.Han, S.Y., Tsou, M-H and Clarke K.C. (2015) Do Global Cities Enable Global Views? Using Twitter to Quantify the Level of Geographical Awareness of U. S. Cities. PLoS ONE 10(7): e0132464. doi:10.1371/journal.pone.01324642015
163.Chaudhuri, G. and Clarke, K. C. (2015) On the spatiotemporal dynamics of the coupling between land use and road networks: does political history matter? Environment and Planning B—Planning and Design. 42, 1, 133-156.2015
164.Wu, H., Li, K., Shi, W., Clarke, K. C., Zhang, J . and Li. H. (2015) A wavelet-based hybrid approach to remove the flicker noise and the white noise from GPS coordinate time series. GPS Solutions 19, 4, 511-523. http://dx.doi.org/10.1007/s10291-014-0412-62015
165.Chen, Y-J, McFadden, J. P., Clarke, K. C. and Roberts, D. (2015) Measuring Spatio-temporal Trends in Residential Landscape Irrigation Extent and Rate in Los Angeles, California Using SPOT-5 Satellite Imagery. Water Resources Management. 29, 15, 5749-5763.2015
166.Li, F., Liang, J., Clarke, K. C., Li, M., Liu, Y. and Huang, Q. (2015) Urban land growth in eastern China: a general analytical framework based on the role of urban micro-agents’ adaptive behavior. Regional Environmental Change, 15, 4, 695-707.2015
167.Li, Z., Yang, C. P., Schnase, J. L., Duffy, D., & Lee, T. J. (2014, December). Developing a Hadoop-based Middleware for Handling Multi-dimensional NetCDF. In AGU Fall Meeting Abstracts.2014
168.Sun, M., Jiang, Y., & Yang, C. P. (2014, December). Developing a middleware to support HDF data access in ArcGIS. In AGU Fall Meeting Abstracts.2014
169.Yu, M., Gui, Z., Yang, C. P., Xia, J., & Chen, S. (2014, December). Investigation on Accelerating Dust Storm Simulation via Domain Decomposition Methods. In AGU Fall Meeting Abstracts.2014
170.Yang, C. P., Xu, C., Sun, M., & Li, Z. (2014, December). Developing a comprehensive conceptual arhictecture to support Earth sciences. In AGU Fall Meeting Abstracts.2014
171.Xu, C., & Yang, C. (2014). Introduction to big geospatial data research. Annals of GIS, 20(4), 227-232.2014
172.Gui, Z., Yang, C., Xia, J., Huang, Q., Liu, K., Li, Z., … & Jin, B. (2014). A service brokering and recommendation mechanism for better selecting cloud services. PloS one, 9(8), e105297.2014
173.Xia, J., Yang, C., Gui, Z., Liu, K., & Li, Z. (2014). Optimizing an index with spatiotemporal patterns to support GEOSS Clearinghouse. International Journal of Geographical Information Science, 28(7), 1459-1481.2014
174.Dias, S., Yang, C., Stefanidis, A., & Rice, M. (2014). Mashing up Geographic Information for Emergency Response—An Earthquake Prototype. Journal of Geographic Information System, 6(05), 533.2014
175.Curtin, K. M., Voicu, G., Rice, M. T., & Stefanidis, A. (2014). A comparative analysis of traveling salesman solutions from geographic information systems. Transactions in GIS, 18(2), 286-301.2014
176.Rice, M. T., Paez, F. I., Rice, R. M., Ong, E. W., Qin, H., Seitz, C. R., … & Medina, R. M. (2014). Quality assessment and accessibility applications of crowdsourced geospatial data: A report on the development and extension of the George Mason University Geocrowdsourcing Testbed. GEORGE MASON UNIV FAIRFAX VA.2014
177.Sun, D., & Pinker, R. (2014). Factors contributing to the spatial variability of Satellite estimates of diurnal temperature range in the United States. IEEE Geoscience and Remote Sensing Letters, 11(9), 1524-1528.2014
12.Huang, C., Chen, X., Li, Y., Yang, H., Sun, D., Le, C., & Xu, L. (2014). Deriving inherent optical property for highly turbid productive inland water from MERIS data by semi-analytical model: A case study in Taihu Lake, China. Aquatic ecosystem health & management, 17(3), 252-260.2014
13.Li, H., Sun, D., Yu, Y., Wang, H., Liu, Y., Liu, Q., … & Cao, B. (2014). Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China. Remote Sensing of Environment, 142, 111-121.2014
14.Fang, L., Yu, Y., Xu, H., & Sun, D. (2014). New retrieval algorithm for deriving land surface temperature from geostationary orbiting satellite observations. IEEE Transactions on Geoscience and Remote Sensing, 52(2), 819-828.2014
15.Josh Lieberman, Development of National Map ontologies for organization and orchestration of hydrologic observations, talk at AGU Fall Meeting 20142014
16.Li, S., Yu, Y., Sun, D., Tarpley, D., Zhan, X., & Chiu, L. (2014). Evaluation of 10 year AQUA/MODIS land surface temperature with SURFRAD observations. International journal of remote sensing, 35(3), 830-856.2014
17.Clarke, K. C. (2014) Cellular Automata and Agent-Based Models. Chapter 62 in Fischer, M. M. and Nijkamp, P. (eds) Handbook of Regional Science. Springer-Verlag, Berlin Heidelberg.2014
18.Peiman, R. and Clarke, K. C. (2014) The Impact of Data Time Span on Forecast Accuracy through Calibrating the SLEUTH Urban Growth Model International Journal of Applied Geospatial Research, 5(3), 21-35.2014
19.Akin, A., Clarke, K, C., and Berberoglu, S. (2014) The impact of historical exclusion on the calibration of the SLEUTH urban growth model . International Journal of Applied Earth Observation and Geoinformation. 27, B, 156-168.2014
20.Chaudhuri, G. and Clarke, K. C. (2014) Temporal Accuracy in Urban Growth Forecasting: A Study Using the SLEUTH Model Transactions in GIS, 18, 2, 302-320.2014
21.Lippitt, C. D.; Stow, D. A. and Clarke, K. C. (2014) On the nature of models for time-sensitive remote sensing. International Journal of Remote Sensing. 35, 18, 6815-6841.2014
22.Clarke, K. C. (2014) GeoComputation in 2061. Chapter 19 in Robert J . Abrahart and Linda M . See (eds) GeoComputation, 2e, CRC Press, 429–446. DOI: 10.1201/b17091-202014
1.Yang, C., & Huang, Q. (2013). Spatial cloud computing: a practical approach. CRC Press.2013
2.Li, Z., Yang, C., Liu, K., Sun, M., XIA, J., & Huang, Q. (2013, December). Utilizing Cloud Computing to Improve Climate Modeling and Studies. In AGU Fall Meeting Abstracts.2013
3.XIA, J., Yang, C., Liu, K., Huang, Q., & Li, Z. (2013, December). Mining User spatiotemporal Behavior in Geospatial Cyberinfrastructure–using GEOSS Clearinghouse as an example. In AGU Fall Meeting Abstracts.2013
4.Gui, Z., Yang, C., XIA, J., Huang, Q., & YU, M. (2013, December). Accelerating Dust Storm Simulation by Balancing Task Allocation in Parallel Computing Environment. In AGU Fall Meeting Abstracts.2013
5.Yang, C., Huang, T., Armstrong, E. M., Moroni, D. F., Liu, K., & Gui, Z. (2013, December). Semantically optiMize the dAta seRvice operaTion (SMART) system for better data discovery and access. In AGU Fall Meeting Abstracts.2013
6.ZHOU, N., XIA, J., Nebert, D., Yang, C., Gui, Z., & Liu, K. (2013, December). Developing a distributed HTML5-based search engine for geospatial resource discovery. In AGU Fall Meeting Abstracts.2013
7.Yang, C., Li, Z., XIA, J., Liu, K., Gui, Z., & Li, W. (2013, December). A Cloud-enabled Service-oriented Spatial Web Portal for Facilitating Arctic Data Discovery, Integration, and Utilization. In AGU Fall Meeting Abstracts.2013
8.Nebert, D. D., Huang, Q., & Yang, C. (2013, December). Cloud Computing for Geosciences–GeoCloud for standardized geospatial service platforms. In AGU Fall Meeting Abstracts.2013
9.Xu, C., Yang, C., & Meyer, C. B. (2013, December). Linking Humans to Data: Designing an Enterprise Architecture for EarthCube. In AGU Fall Meeting Abstracts.2013
10.Huang, Q., Yang, C., Liu, K., Xia, J., Xu, C., Li, J., … & Li, Z. (2013). Evaluating open-source cloud computing solutions for geosciences. Computers & Geosciences, 59, 41-52.2013
11.Yu, M., Yang, C., Huang, Q., Gui, Z., & Xia, J. (2013, August). Utilizing high spatiotemporal resolution soil moisture for dust storm modeling. In Agro-Geoinformatics (Agro-Geoinformatics), 2013 Second International Conference on (pp. 176-181). IEEE.2013
12.Yang, C., Xu, Y., & Nebert, D. (2013). Redefining the possibility of digital Earth and geosciences with spatial cloud computing. International Journal of Digital Earth, 6(4), 297-312.2013
13.Gui, Z., Yang, C., Xia, J., Li, J., Rezgui, A., Sun, M., … & Fay, D. (2013). A visualization-enhanced graphical user interface for geospatial resource discovery. Annals of GIS, 19(2), 109-121.2013
14.Gui, Z., Yang, C., Xia, J., Liu, K., Xu, C., Li, J., & Lostritto, P. (2013). A performance, semantic and service quality-enhanced distributed search engine for improving geospatial resource discovery. International Journal of Geographical Information Science, 27(6), 1109-1132.2013
15.Li, Z., Yang, C., Sun, M., Li, J., Xu, C., Huang, Q., & Liu, K. (2013, April). A high performance web-based system for analyzing and visualizing spatiotemporal data for climate studies. In International Symposium on Web and Wireless Geographical Information Systems (pp. 190-198). Springer, Berlin, Heidelberg.2013
16.Huang, Q., Yang, C., Benedict, K., Rezgui, A., Xie, J., Xia, J., & Chen, S. (2013). Using adaptively coupled models and high-performance computing for enabling the computability of dust storm forecasting. International Journal of Geographical Information Science, 27(4), 765-784.2013
17.Rezgui, A., Malik, Z., & Yang, C. (2013, March). High-resolution spatial interpolation on cloud platforms. In Proceedings of the 28th Annual ACM Symposium on Applied Computing (pp. 377-382). ACM.2013
18.Xu, C., Wong, D. W., & Yang, C. (2013). Evaluating the “geographical awareness” of individuals: An exploratory analysis of Twitter data. Cartography and Geographic Information Science, 40(2), 103-115.2013
19.Shi, X., Kindratenko, V., & Yang, C. (2013). Modern accelerator technologies for geographic information science. In Modern Accelerator Technologies for Geographic Information Science (pp. 3-6). Springer, Boston, MA.2013
20.Lui, K., Yang, C., & Gui, Z. (2013). GeoSearch: A system Utilizing Ontology and Knowledge Reasoning to Support Geospatial Data Discovery. In Workshop on Semantics in Geospatial Architectures: Applications and Implementation.2013
21.Li, J., Jiang, Y., Yang, C., & Huang, Q. (2013). Utilizing CUDA-Enabled GPUs to Support 5D Scientific Geovisualization: A Case Study of Simulating Dust Storm Events. In Modern Accelerator Technologies for Geographic Information Science (pp. 69-82). Springer, Boston, MA.2013
22.Huang, Q., Li, Z., Xia, J., Jiang, Y., Xu, C., Liu, K., … & Yang, C. (2013). Accelerating geocomputation with cloud computing. In Modern Accelerator Technologies for Geographic Information Science (pp. 41-51). Springer, Boston, MA.2013
23.Rezgui, A., Malik, Z., Xia, J., Liu, K., & Yang, C. (2013). Data-intensive spatial indexing on the clouds. Procedia Computer Science, 18, 2615-2618.2013
24.Rice, M. T., Curtin, K. M., Paez, F. I., Seitz, C. R., & Qin, H. (2013). Crowdsourcing to support navigation for the disabled: a report on the motivations, design, creation and assessment of a testbed environment for accessibility (No. AA10-4733). GEORGE MASON UNIV FAIRFAX VA.2013
25.Li, J., Jiang, Y., Yang, C., Huang, Q., & Rice, M. (2013). Visualizing 3D/4D environmental data using many-core graphics processing units (GPUs) and multi-core central processing units (CPUs). Computers & Geosciences, 59, 78-89.2013
26.Rice, M. T., Jacobson, R. D., Caldwell, D. R., McDermott, S. D., Paez, F. I., Aburizaiza, A. O., … & Qin, H. (2013). Crowdsourcing techniques for augmenting traditional accessibility maps with transitory obstacle information. Cartography and Geographic Information Science, 40(3), 210-219.2013
27.Stefanidis, A., Cotnoir, A., Croitoru, A., Crooks, A., Rice, M., & Radzikowski, J. (2013). Demarcating new boundaries: mapping virtual polycentric communities through social media content. Cartography and Geographic Information Science, 40(2), 116-129.2013
28.Stefanidis, A., Cotnoir, A., Croitoru, A., Crooks, A. T., Radzikowski, J., & Rice, M. (2013). Statehood 2.0: Mapping nation-states and their satellite communities through social media content. Cartography and Geographic Information Science, 40(2), 116-129.2013
29.Fuhrmann, S., Huynh, N. T., & Scholz, R. (2013). Comparing fear of crime and crime statistics on a university campus. In Crime Modeling and Mapping Using Geospatial Technologies (pp. 319-337). Springer, Dordrecht.2013
30.Sun, D., Yu, Y., Fang, L., & Liu, Y. (2013). Toward an operational land surface temperature algorithm for GOES. Journal of Applied Meteorology and Climatology, 52(9), 1974-1986.2013
31.Li, S., Sun, D., & Yu, Y. (2013). Automatic cloud-shadow removal from flood/standing water maps using MSG/SEVIRI imagery. International journal of remote sensing, 34(15), 5487-5502.2013
32.Li, S., Sun, D., Goldberg, M., & Stefanidis, A. (2013). Derivation of 30-m-resolution water maps from TERRA/MODIS and SRTM. Remote Sensing of Environment, 134, 417-430.2013
33.Sun, D., Yu, Y., Yang, H., Liu, Q., & Shi, J. (2013). Comparison between GOES-East and-West for land surface temperature retrieval from a dual-window algorithm. IEEE Geoscience and Remote Sensing Letters, 10(3), 578-582.2013
34.Liu, Y., Yu, Y., Sun, D., Tarpley, D., & Fang, L. (2013). Effect of different MODIS emissivity products on land-surface temperature retrieval from GOES series. IEEE Geoscience and Remote Sensing Letters, 10(3), 510-514.2013
35.Li, S., Sun, D., Yu, Y., Csiszar, I., Stefanidis, A., & Goldberg, M. D. (2013). A new short-wave infrared (SWIR) method for quantitative water fraction derivation and evaluation with EOS/MODIS and Landsat/TM data. IEEE Transactions on Geoscience and Remote Sensing, 51(3), 1852-1862.2013
36.Zhang, R., Sun, D., Li, S., & Yu, Y. (2013). A stepwise cloud shadow detection approach combining geometry determination and SVM classification for MODIS data. International journal of remote sensing, 34(1), 211-226.2013
37.Xia J., Sun, D., & Yu, Y. (2013). Land Surface Temperature (LST) Retrieval from GOES Satellite Observations. In Satellite-based Applications on Climate Change (pp. 289-334). Springer, Dordrecht.2013